Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В	05 Параллельное программирование					
наименование	дисциплины (модуля) в соответствии с учебным планом					
Направление подгото	вки / специальность					
02.03.	02.03.01 Математика и компьютерные науки					
Направленность (про	филь)					
02.03.01.31 Ma	атематическое и компьютерное моделирование					
Форма обучения	очная					
Год набора	Год набора 2021					

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили					
к.ф	ом.н., доцент, Карепова Е.Д.				
	попуность инициалы фамилия				

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Дисциплина «Параллельное программирование» предназначена для изучения средств и методов создания приложений для различных архитектур вычислительных систем (ВС). При изучении дисциплины уделяется особое внимание получению практических навыков написания параллельных программ в терминах конкретных библиотек и/или языковых реализаций для ВС как с общей, так и распределенной памятью (в том числе, многоядерных и кластерных архитектур).

В рамках изучения дисциплины рассматриваются базовые сведения о ряде систем программирования, позволяющие начать разработку параллельных программ для параллельных ВС с общей и распределенной памятью. Знания и навыки, полученные при изучении дисциплины, позволяют в дальнейшем перейти к более детальному освоению инструментальных средств разработки параллельных программ.

Дисциплина «Параллельное программирование» согласно учебному плану является дисциплиной по выбору вариативной части профессионального цикла (Б1.В.ДВ.6) по направлению 02.03.01 «Математика и компьютерные науки».

Дисциплина изучается в последнем (8-ом) семестре бакалавриата и завершает формирование основных общенаучных, общепрофессиональных и профессиональных компетенций студента.

Изучение дисциплины формирует базу для углубленного изучения параллельного программирования для высокопроизводительных BC в магистратуре.

1.2 Задачи изучения дисциплины

При изучении дисциплины учащиеся должны решить следующие основные задачи.

- 1. Получить представление об особенностях архитектуры различных классов ПВС, задачах, которые невозможно решить без помощи высокопроизводительных вычислений и параллельного программирования.
- 2. Изучить основные проблемы, возникающие при программировании для BC с общей памятью и пути их разрешения, понять особенности синхронизации и взаимодействия потоков.
- 3. Рассмотреть основные концепции и средства, предлагаемые в области параллельного программирования.
- 4. Изучить основные функции WinAPI, используемые для создания и управления потоками в ОС Windows.
- 5. Провести сравнительный анализ теоретических основ и различных языковых реализаций механизма синхронизации и взаимодействия потоков для ВС с общей памятью.
- 6. Изучить основные проблемы, возникающие при программировании для ВС с распределенной памятью и пути их разрешения, понять особенности синхронизации и взаимодействия процессов.

- 7. Рассмотреть SPMD-модель организации параллельных вычислений на основе одновременного выполнения одной и той же программы на нескольких процессорах с организацией взаимодействия процессов при помощи передачи сообщений.
- 8. Получить практические навыки программирования с использованием библиотеки передачи сообщений MPI для BC с распределенной памятью.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование индикатора
лостижения компетенции

Запланированные результаты обучения по дисциплине

ПК-2: Способен использовать современные методы разработки и реализации алгоритмов на базе языков программирования и пакетов прикладных программ моделирования

ПК-2.1: Применяет знания современных методов разработки и реализации алгоритмов математических моделей на базе языков и пакетов прикладных программ моделирования при решении конкретных задач

Знать основные принципы построения математических моделей и существущие пакеты прикладных программ для их реализации; Знать основные принципы построения математических моделей, существущие пакеты прикладных программ для их реализации. Знать алгоритмы реализации основных математических моделей;

Знать основные принципы построения математических моделей, существущие пакеты прикладных программ для их реализации. Знать существующие алгоритмы реализации основных математических моделей и основные принципы разработки новых алгоритмов;

Строить математические модели и использовать существующие пакеты прикладных программ для их реализации;

Строить математические модели и использовать существующие пакеты прикладных программ для их реализации. Уметь реализовывать существующие алгоритмы для основных математических моделей; Строить математические модели и использовать существующие пакеты прикладных программ для их реализации. Уметь реализовывать существующие алгоритмы для основных математических моделей, разрабатывать новые алгоритмы решения новых задач;

Владеть навыком использования сущестувующих пакетов прикладных программ;

Владеть навыком использования сущестувующих пакетов прикладных программ. Владеть навыом программирования и реализации существующих алгоритмов;

Владеть навыком использования сущестувующих

	пакетов прикладных программ. Владеть навыом			
	программирования и реализации существующих			
	алгоритмов. Владеть навыком разработки новых			
	алгоритмов.			
ПК-2.2: Разрабатывает и	основные принципы реализации алгоритмов с			
реализовывает алгоритмы	помощью существующих пакетов прикладных			
математических моделей на	программ;			
базе языков и пакетов	основные принципы реализации алгоритмов с			
прикладных программ	помощью существующих пакетов прикладных			
моделирования	программ и основные языки программирования;			
	основные принципы реализации и разработки			
	алгоритмов с помощью существующих пакетов			
	прикладных программ и основных языки			
	программирования;			
	реализовывать алгоритмы с помощью			
	существующих пакетов прикладных программ;			
	реализовывать существущие алгоритмы с помощью			
	существующих пакетов прикладных программ и с			
	помощью основных языков программирования;			
	реализовывать и разрабатывать существущие			
	алгоритмы с помощью существующих пакетов			
	прикладных программ и с помощью основных			
	языков программирования;			
	навыком реализации существующих алгоритмов с			
	помощью существующих пакетов прикладных			
	программ;			
	навыком реализации существущих алгоритмов с			
	помощью существующих пакетов прикладных			
	программ и с помощью основных языков			
	программирования;			
	навыком реализации и разработки существущих			
	алгоритмов с помощью существующих пакетов			
	прикладных программ и с помощью основных			
	языков программирования;			
ПК-3: Способен создавать и ис	слеловать математические молели в естественных			

ПК-3: Способен создавать и исследовать математические модели в естественных науках, промышленности и бизнесе, с учетом возможностей современных информационных технологий, программирования и компьютерной техники

ПК-3.1: Выписывает
математические постановки
классических моделей,
применяемых в естественных
науках, промышленности и
бизнесе

основные задачи и области применения методов математического моделирования; основные задачи и области применения методов математического моделирования; особенности объектов моделирования; основные задачи и области применения методов математического моделирования; особенности объектов моделирования; законы сохранения; выписывать математические постановки класических моделей; выписывать математические постановки класических моделей; выявлять общие закономерности исслеуемых объектов;

выписывать математические постановки класических

моделей; выявлять общие закономерности исслеуемых объектов; выбирать методы исследования классических моделей; математической строгостью и навыком выявления общих закономерностей исследуемых объектов; математической строгостью и навыком выявления общих закономерностей исследуемых объектов; навыком применения математического аппарата к исследуемому объекту; математической строгостью и навыком выявления общих закономерностей исследуемых объектов; навыком применения математического аппарата к исследуемому объекту; навыком применения полученных знаний

	1					
ПК-3.2: Исследует и	профессиональную терминологию;					
анализирует математические	профессиональную терминологию; методы					
модели, применяемые в	построения и исследования математических					
естественных науках,	моделей;					
промышленности и бизнесе	профессиональную терминологию; методы					
	построения и исследования математических					
	моделей; современные тенденции развития, научные					
	и прикладные достижения прикладной математики;					
	ставить задачи исследования и оптимизации					
	сложных объектов на основе методов					
	математического моделирования;					
	ставить задачи исследования и оптимизации					
	сложных объектов на основе методов					
	математического моделирования; выбирать методы					
	исследования математических моделей;					
	ставить задачи исследования и оптимизации					
	сложных объектов на основе методов					
	математического моделирования; выбирать методы					
	исследования математических моделей; строить и					
	исследовать математические модели;					
	методами исследования математических моделей;					
	методами исследования математических моделей;					
	навыками применения алгоритмов исследования					
	математических моделей;					
	методами исследования математических моделей;					
	навыками применения алгоритмов исследования					
	математических моделей; навыками сборки и					
	анализа полученных результатов.					
	allation for tentibly posylibrator.					

ПК-3.3: Применяет языки программирования и пакеты прикладных программ для проведения математического моделирования при помощи компьютерной техники

принципы организации взаимодействия между различными пакетами прикладных программ; принципы организации взаимодействия между различными пакетами прикладных программ; возможности объектно-ориентированного языка; принципы организации взаимодействия между различными пакетами прикладных программ; возможности объектно-ориентированного языка; принципы реализации математических моделей в помощью объектно-ориентированных языков программирования;

проектировать и разрабатывать алгоритмы реализации математических моделей; проектировать и разрабатывать алгоритмы реализации математических моделей; применять современные пакеты прикладных программ для решения задач математического моделирования; проектировать и разрабатывать алгоритмы реализации математических моделей; применять современные пакеты прикладных программ для решения задач математического моделирования; визуализировать и интерпретировать результаты вычислительного эксперимента

навыками проектирования и разработки алгоритмов реализации математических моделей; навыками проектирования и разработки алгоритмов реализации математических моделей; навыками применения современных пакетов прикладных программ для решения задач математического моделирования; навыками проектирования и разработки алгоритмов реализации математических моделей; навыками применения современных пакетов прикладных программ для решения задач математического моделирования; навыками визуализирования и

итерпретации результатов вычислительного

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется с применением ЭО и ДОТ

эксперимента;

URL-адрес и название электронного обучающего курса: http://study.sfu-kras.ru/course/category.php?id=13 .

2. Объем дисциплины (модуля)

Вид учебной работы	Всего, зачетных единиц (акад.час)	e 1
Контактная работа с преподавателем:	1,67 (60)	
занятия лекционного типа	0,67 (24)	
практические занятия	1 (36)	
Самостоятельная работа обучающихся:	1,33 (48)	
курсовое проектирование (КП)	Нет	
курсовая работа (КР)	Нет	

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

		Контактная работа, ак. час.								
			Занятия		Занятия семинарского типа				Самостоятельная	
№ п/п	Модули, темы (разделы) дисциплины	лекционного типа		Семинары и/или Практические занятия		Лабораторные работы и/или Практикумы		работа, ак. час.		
			В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	
1. Обзор области параллельного программирования. Технологии, пара				програмі	иные сред	іства				
	1. Введение. Параллельные компьютеры и суперЭВМ.	2								
	2. Введение. Особенности параллельного программирования.	2								
	3. Анатомия простого многопоточного приложения. Компиляция, компоновка и запуск готового многопоточного приложения с помощью WIN API.			3						
	4. Введение. Параллельные компьютеры и суперЭВМ.							4	1	
	5. Введение. Особенности параллельного программирования.							4	1	
2. Oc	обенности разработки параллельных приложений для с	истем с о	бщей пам	иятью						
	1. Процессы и потоки. Реализации многопоточности.	2								
	2. Механизм синхронизации процессов. Решения с активным ожиданием.	2								
	3. Семафоры и мониторы. Реализации.	6								

1
1
3
1

10. Работа на кластере СФУ.				4	1
11. Программирование с помощью библиотеки МРІ.				4	1
12. Двухточечные обмены в библиотеке МРІ.				4	1
13. Коллективные обмены в библиотеке МРІ.				4	1
Всего	24	36		48	12

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Карепова Е. Д., Кузьмин Д. А., Легалов А. И., Редькин А. В., Удалова Ю. В., Федоров Г. А. Средства разработки параллельных программ: электрон. учеб.-метод. комплекс дисциплины(Красноярск: ИПК СФУ).
- 2. Гергель В. П. Высокопроизводительные вычисления для многопроцессорных многоядерных систем: учебник для студентов вузов (Москва: Изд-во МГУ).
- 3. Карепова Е. Д. Основы многопоточного и параллельного программирования: учебное пособие для студентов вузов, обучающихся по направлениям "Прикладная математика и информатика" и "Фундаментальная информатика и информационные технологии"(Красноярск: СФУ).
- 4. Немнюгин С.А., Стесик О.Л. Параллельное программирование для многопроцессорных вычислительных систем: Пособие(Санкт-Петербург: Издательство "БХВ-Петербург").
- 5. Ортега Д. М., Икрамов Х. Д. Введение в параллельные и векторные методы решения линейных систем: перевод с английского(Москва: Мир).
- 6. Таненбаум Э. Современные операционные системы(Москва: Питер).
- 7. Корняков К. В., Кустикова В. Д., Мееров И. Б., Сиднев А. А., Сысоев А. В., Шишков А. В., Гергель В. П. Инструменты параллельного программирования в системах с общей памятью: учебник для студентов вузов(Москва: Изд-во МГУ).
- 8. Старченко А. В., Данилкин Е. А., Лаева В. И., Проханов С. А., Старченко А. В. Практикум по методам параллельных вычислений: учебник для студентов вузов(Москва: Изд-во МГУ).
- 9. Антонов А. С. Технологии параллельного программирования МРІ и OpenMP: учебное пособие для студентов вузов, обучающихся по напр. 010400 "Прикладная математика и информатика", 010300 "Фундаментальная информатика и информационные технологии" (Москва: Изд-во Московского университета).
- 10. Гергель В. П. Современные языки и технологии параллельного программирования: учебник для студентов вузов, обуч. по направлениям 010400 "Прикладная математика и информатика" и 010300 "Фундаментальная информатика и информационные технологии" (Москва: Издательство Московского университета).
- 11. Малышкин В. Э., Корнеев В. Д. Параллельное программирование мультикомпьютеров: [учебник для вузов](Новосибирск: Издательство НГТУ).
- 12. Таненбаум Э., Гребеньков А. Компьютерные сети(Москва: Питер).
- 13. Таненбаум Э., Бос Х. Современные операционные системы(Москва: Питер).

- 14. Таненбаум Э. Компьютерные сети(СПб.: Питер).
- 15. Таненбаум Э. Современные операционные системы(СПб.: Питер).
- 16. Рихтер Дж Windows для профессионалов: создание эффективных Win32 приложений с учетом специфики 64-разрядной версии Windows(СПб.: Питер).
- 17. Шлее М. Qt4.5. Профессиональное программирование на C++: Практическое руководство(Санкт-Петербург: Издательство "БХВ-Петербург").
- 18. Воеводин В. В., Воеводин В. В. Параллельные вычисления: Пособие (Санкт-Петербург: Издательство "БХВ-Петербург").
- 19. Сиротинина Н. Ю., Миркес Е. М., Карепова Е. Д. Параллельные вычислительные системы: учебно-методический комплекс дисциплины (Красноярск: ИПК СФУ).

4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):

- 1. Лекционные занятия должны проводиться в аудитории, оснащенной проекционным оборудованием, обеспечивающим показ компьютерных презентаций. Используемый при этом компьютер должен быть оснащен программным обеспечением, позволяющим выполнять необходимые примеры программного кода.
- 2. Лекционные занятия должны проводиться в аудитории, оснащенной проекционным оборудованием, обеспечивающим показ компьютерных презентаций. Используемый при этом компьютер должен быть оснащен программным обеспечением, позволяющим выполнять необходимые примеры программного кода.
- 3. Компьютер может быть оснащен любой из операционных систем, обеспечивающих поддержку инструментальных средств, необходимых для проведения занятий. В настоящее время основной упор сделан на использование операционной системы Windows. Однако возможно и использование ОС Linux, которая содержит программные средства, позволяющие использовать как уже разработанное методическое обеспечении, так и применяемые программы.
- 4. Для успешного проведения лекционных занятий необходимо обеспечить показ презентаций в формате MS Power Point и Adobe Acrobat Reader. Внимание! Презентации содержат специфические объекты и плохо отображаются в формате Open Office.

- 5. Также необходимо иметь установленные средства для отображения исходных текстов программ на используемых в примерах языках программирования (C++, C). В простейшем случае это могут быть обычные текстовые редакторы. Однако целесообразнее использовать текстовые редакторы с подстветкой синтаксиса или среды разработки, обеспечивающие отображение исходных текстов с подсветкой. Желательна установка ПО со средой разработки, позволяющей собрать проект, откомпилировать и запустить его как в обычном режиме, так и в режиме отладки. Для ОС Windows это может быть как продукт Visual C, входящий в пакет Microsoft Visual Studio версии не ниже 6.0. Возможно использование более простой среды, например, Borland C или свободно распространяемого компилятора MinGW C++.
- 6. Помимо этого целесообразно иметь выход в сеть Сибирского федерального университета для подключения к суперкомпьютеру, имеющимся кластерным системам и вычислительным системам с многоядерной архитектурой.
- 7. Лабораторные занятия должны проводиться в компьютерном классе или с использованием удаленного доступа к имеющимся кластерным системам и суперкомпьютеру. При изучении многопоточного программирования с применением Win 32 API желательно наличие компьютеров с многоядерной архитектурой или многопроцессорных систем с общей памятью. Это позволит не только попробовать изучаемые технологии, но и увидеть, как они функционируют на реальной многопроцессорной системе, оценить выигрыш, получаемый от использования параллельных вычислительных технологий.
- 8. При изучении технологии MPI возможно использование кластера, построенного на базе компьютерного класса. Он позволяет отработать учебные программы в коллективном режиме и снять предварительные оценки. Для окончательного выполнения программ необходимо иметь сетевой доступ к одной из кластерных систем или суперкомпьютеру. Это кроме всего прочего позволит изучить методы и дисциплины обслуживания удаленных клиентов, применяемых при решении реальных вычислительных задач.

4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:

1. Не требуется.

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Лекционные занятия должны проводиться в аудитории, оснащенной проекционным оборудованием, обеспечивающим показ компьютерных презентаций.

Лабораторные работы должны проводится в компьютерном классе. Желательно, чтобы используемые компьютеры были многоядерными (многопроцессорными системами на общей памяти). Для проведения лабораторных работ № 6-8 необходим доступ к одному из высокопроизводительных кластеров по протоколам ssh и sftp.